

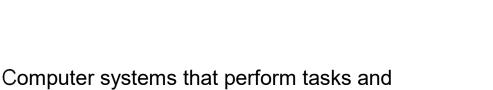
EXPLORATION MANAGER'S CONFERENCE 2023

INTRODUCING DEEP LEARNING & INTERPRETING THE PATTERNS: AN OREBODY KNOWLEDGE PERSPECTIVE

> David First (Chief Geologist) & Daniel Mogilny (Co-Founder), Stratum Al

MACHINE LEARNING (ML)

CORE CONCEPTS



ARTIFICIAL INTELLIGENCE (AI)

MACHINE LEARNING (ML)

DEEP LEARNING (DL) Branch of AI that focuses on creating models that learn automatically from data and experiences to make decisions without being explicitly programmed

make decisions that mimic and possibly

exceed human intelligence

Powerful type of ML model that learns complex patterns from large amounts of data, mimicking neural networks found in the human brain

STRATUM AI

AI IN THE MINING SECTOR

AUTOMATED MACHINERY

Automation and optimisation of mining machinery such as haul trucks and drills

Predictive maintenance on machinery and equipment to minimise downtime

AI GEOLOGY INSIGHTS

Al driven exploration, resource modelling, and improvement of mill processes

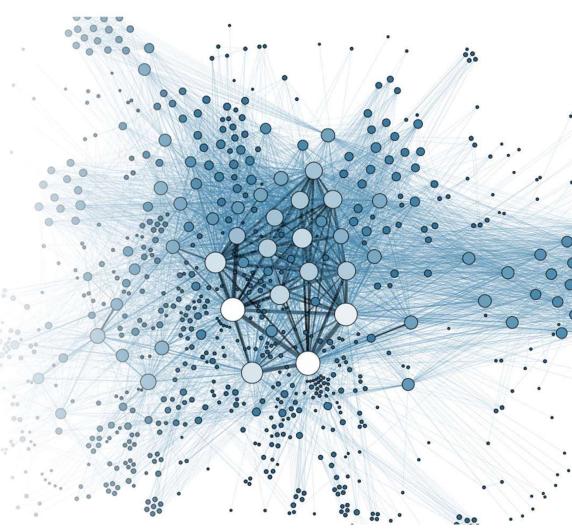
MACHINE LEARNING ML

- ML algorithms learn from historical data; better forecast future patterns &/or trends
- ML is best suited to environment with lots of data and complex patterns
- ML is powerful tool revealing complex patterns in data easily missed by human eye and traditional statistics
- Learn to map between input and output data
- Complete seemingly "unprogrammable" tasks
- e.g. machine translation (i.e. translate text; voice and speech recognition)

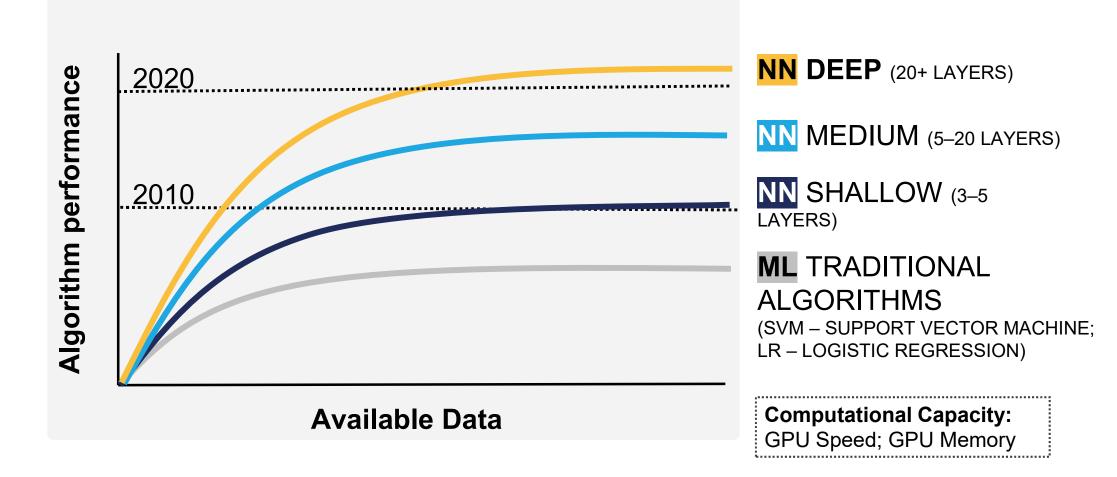
DEEP LEARNING (DL) INTRODUCTION

- Powerful ML algorithms; multiple neural network layers – artificial neurons
- Image recognition; e.g. medical imagery
- Large volumes of data plus very high performance GPUs
- Powerful GPUs only became commercially available at scale since ~2016
- Orebody or deposit requires:

>75,000 data points (assays); DL
25 – 75,000 data points; kriging or DL
<25,000 data points kriging



DATA VS PERFORMANCE



STRATUM AI amira

WHY PYTHON?

- ML and data science language of choice
- Python is NOT special
 - Best viewed as a simple tool to interface with neural nets, data
- Most ML algorithms written in Python
 - No need to recreate 'wheel'
 - Easier for onboarding new software engineers to ML companies
 - Simplicity allows engineers to focus on logic rather than software development
- PyTorch (dev. Linux and Meta AI); ML library (open-source)
 - interfacing with neural nets
- TensorFlow; dev. Google and Google Brain)
- CUDA Library for interfacing with state-of-the-art GPUs

ALGORITHMS & OVERFITTING

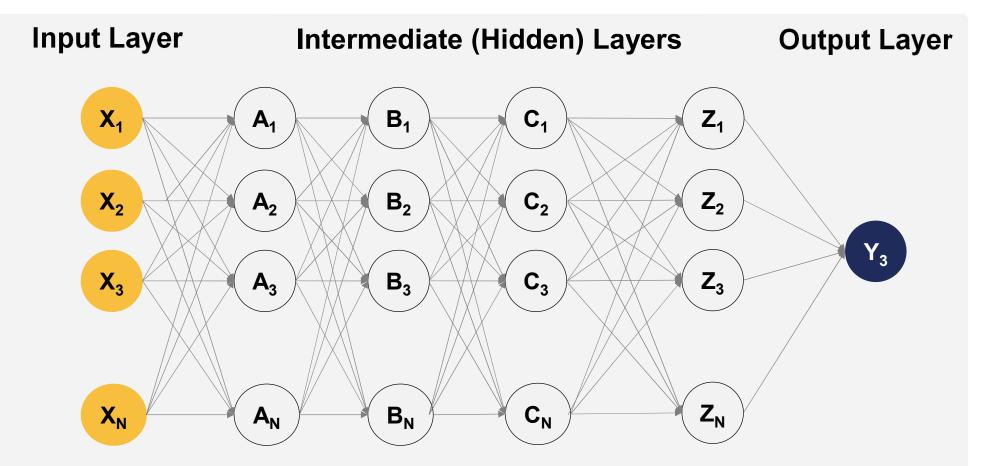
WHAT ARE ML ALGORITHMS?

- Mathematical model mapping methods used to learn or uncover underlying patterns embedded in the data
- Group of computational algorithms that perform pattern recognition, classification and prediction on data by learning from existing data (training set)

WHAT IS OVERFITTING? (& UNDERFITTING)

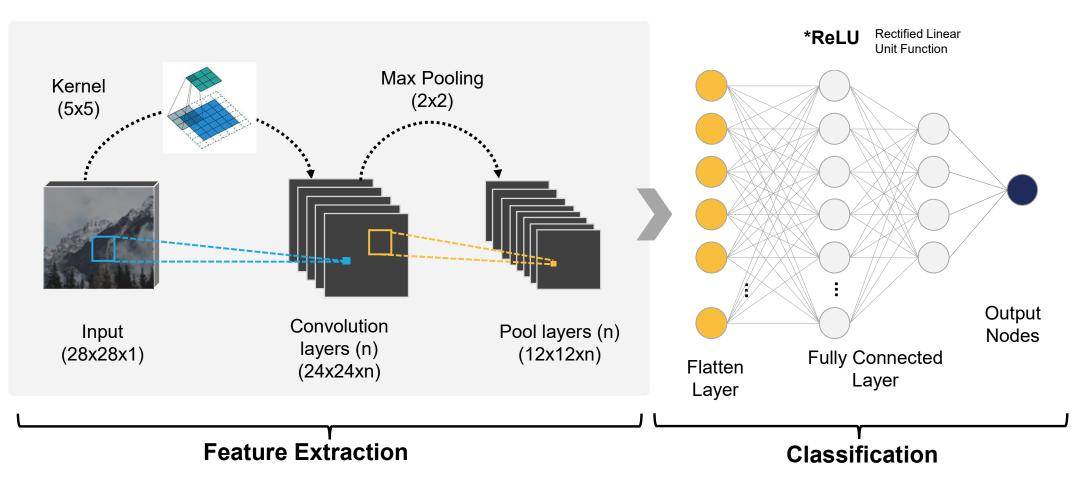
- Model cannot generalise and fits too closely to the training dataset instead.
 - Due to unrepresentative or insufficient data samples not reflecting all possible input data values.
- Underfitting cannot capture the underlying pattern in the data; i.e. only performs well on training data, but performs poorly on testing data

NEURAL NETWORK



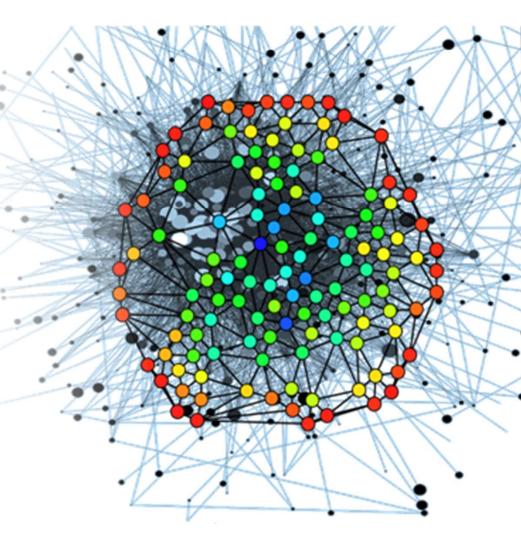
CONVOLUTIONAL NEURAL NETWORK

DL algorithm – successfully captures spatial dependencies in an image by applying relevant filters



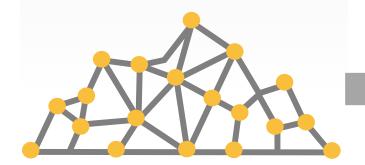
DL – RESOURCE MODELLING

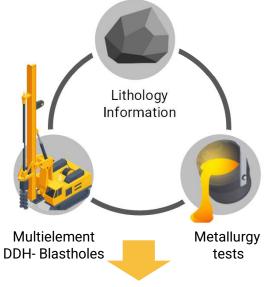
- High density assay data; e.g. exploration drillholes, grade control holes and blastholes
- Identify best model; train 30 150 models
- Trained using 2x A6000 GPUs for 90 150hrs
- 100 150 iterations (epochs); entire data sets
- Data pre-processing; 96 vCPU cores with 128GB RAM
- Statistical Inference process used for each trained model to predict grade of each block of block model; e.g. ~2.5hrs, 10⁶ blocks

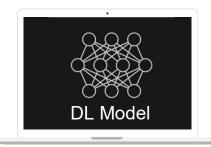


DL ANSWERS MINERAL RESOURCE QUESTIONS?

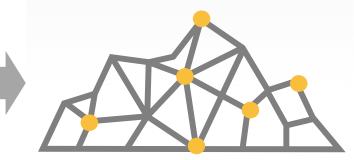
LEARN FROM **HIGH DENSITY** MULTIVARIATE GEOSTATISTICAL DATA...







...TO MODEL MULTIVARIATE DATA IN A **LOWER DENSITY** ENVIRONMENT



WHAT DATA DOES DL LEVERAGE?

Models uses DL technology to learn complex geological patterns Allows models to predict with higher accuracy grade of any given point

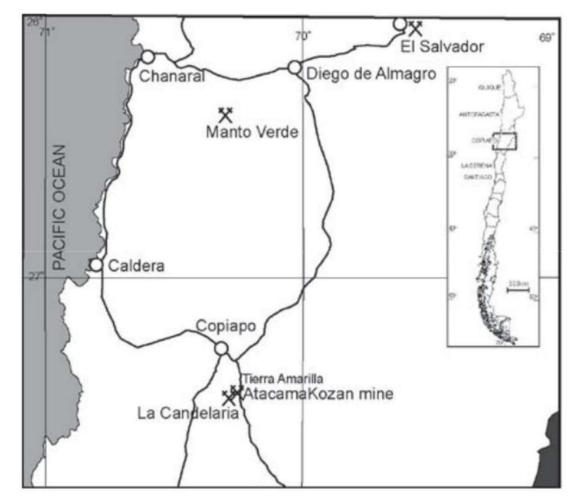
MULTI-CHANNEL DATA	OTHER STRUCTURED DATA	UNSTRUCTURED DATA
Model can train directly on multivariate data sets Learning which channels are relevant Finding useful correlations	DL models can also input other structured data sets	Integrate expert insights and client requirements Training and predicting process – hard and soft controls
MULTI-ELEMENT ASSAYS	CORE LOGGING; CORE SCANNING, TERRASPEC & XRD	GEOLOGY; GEOMETALLURGY; ECONOMICS

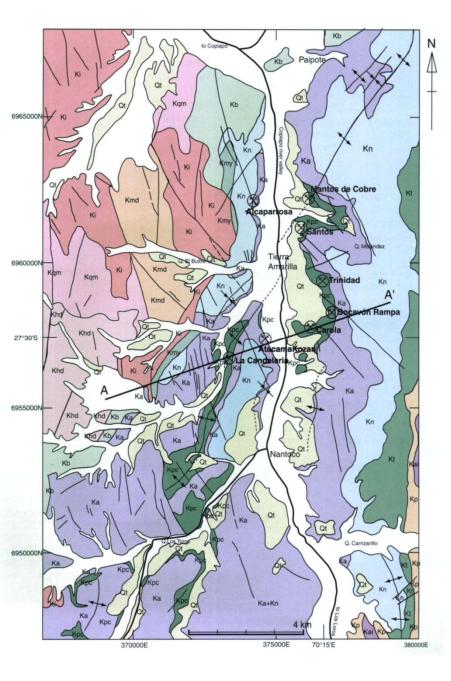
ML/DL PILOT STUDY IOCG

MANTO CU-AU MINE REGION III, CHILE

MANTO – TYPE IOCG MINE CANDELARIA DISTRICT

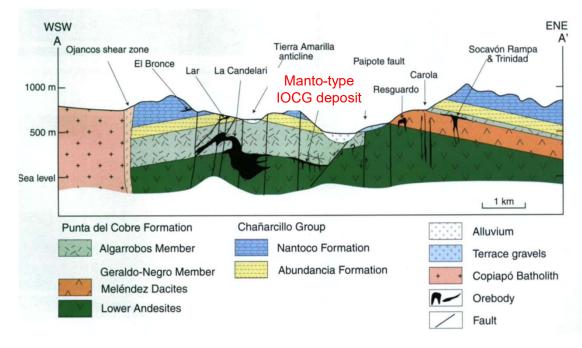
- Region III, northern Chile
- 16 km SSE of Copiapo
- Near Atacama Fault Zone
- Central Andean Coastal Cordillera and Chilean Iron Belt.
- Elevation ~500m
- Underground mine
- Ore body approx. **400m** below surface
- Primary ore crushers underground
- Conveyor (~3.5km) transport ore to surface





SIMPLIFIED GEOLOGY

- Manto-type IOCG deposit
- Near Atacama Fault Zone within the Central Andean Coastal Cordillera and the Chilean Iron Belt
- Lower Cretaceous Formation; andesitic lava, lapilli tuff, tuff, shale and sandstone. Overlain by limestone interbedded with shale, sandstone and tuff



GOALS OF 2022 ML DL PILOT STUDY

De-risk existing model for long-term adoption by demonstrating increased modelling accuracy

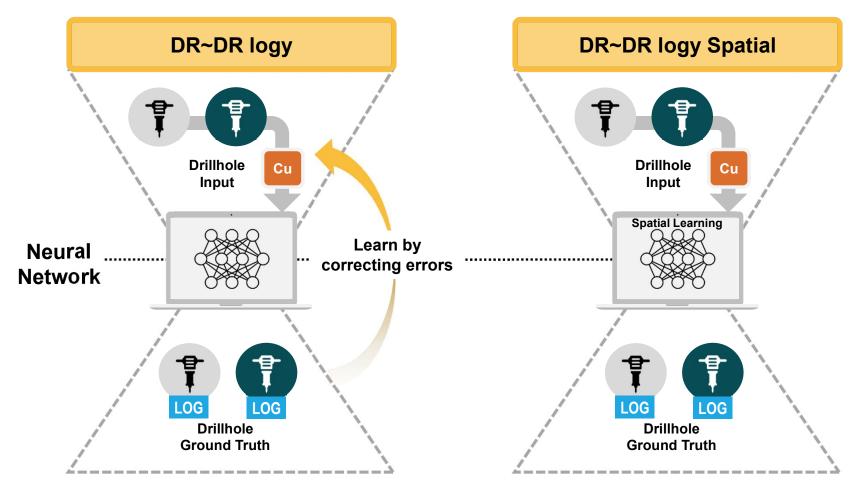
Positive effect on mine planning, ore control, total reserve estimation &/or resource definition drilling *More accurately define orientation and location of manto type mineralisation than kriging*

Demonstrate enhanced ability of the model to **target mineralisation** Better than current drilling practices

Kriging model challenged by highly constrained domains due to grade boundaries Accuracy of the model based on block level metrics: **Precision and Recall**

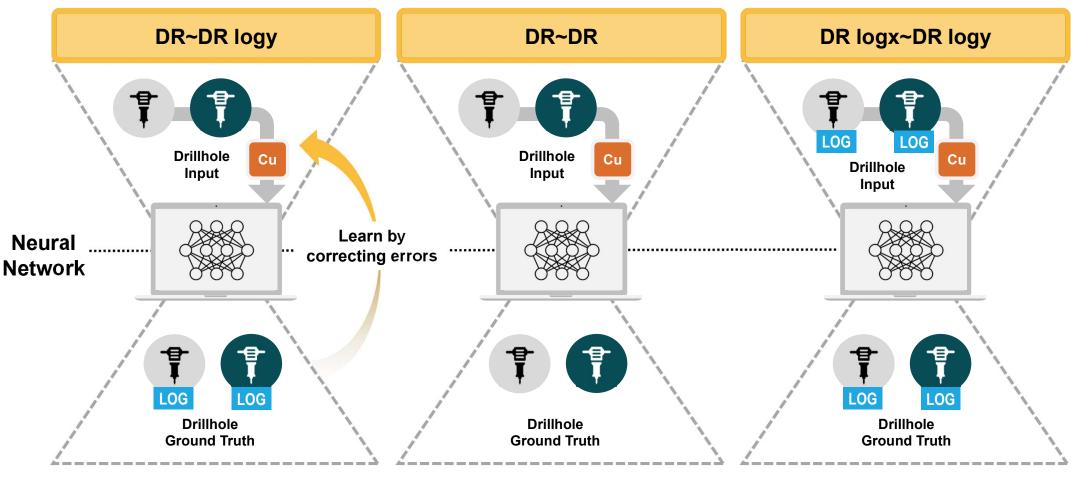
RESULTS

SPATIAL LEARNING



D – diamond drillhole; R – RC drillhole; logy – log y domain; Spatial – special sampling method in training

ALTERNATIVE DOMAIN MODELS



D – diamond drillhole; R – RC drillhole; logx – log x domain; logy – log y domain

SUPPLEMENTARY CHANNELS

ZERO-FILLED CHANNEL (ZFC):

- Unassayed core usually is designated 0% copper
- Significant room for error in visual interpretation, particularly in the ~0.1 0.2% Cu range if logged as barren
- Unassayed core could be weakly mineralisation
- Reduce source of error, ZFC channels indicates to the model whether a grade estimate is assayed (0) or visually barren and assumed to be 0% Cu (1)

SIMPLIFIED ROCK TYPE (ROCK):

- Use the ASSAY-cod column, convert and add as direct input to the model
- Assist with auto-domaining
 - Manto (1) set to 0
 - Breccia (2) set to 1
 - Manto + Breccia (3) set to 0.5

RESULTS

PRECISION

% blocks predict HG and reconcile HG rock-chip data; i.e. tracks frequency of false HG occurrences; that is when a HG ore block predicted in the mine plan reconciles as waste (false positive rate)

RECALL

% reconciled HG predicted as HG; i.e. tracks frequency ore blocks that exist, but missed by the resource model (false negative rate)

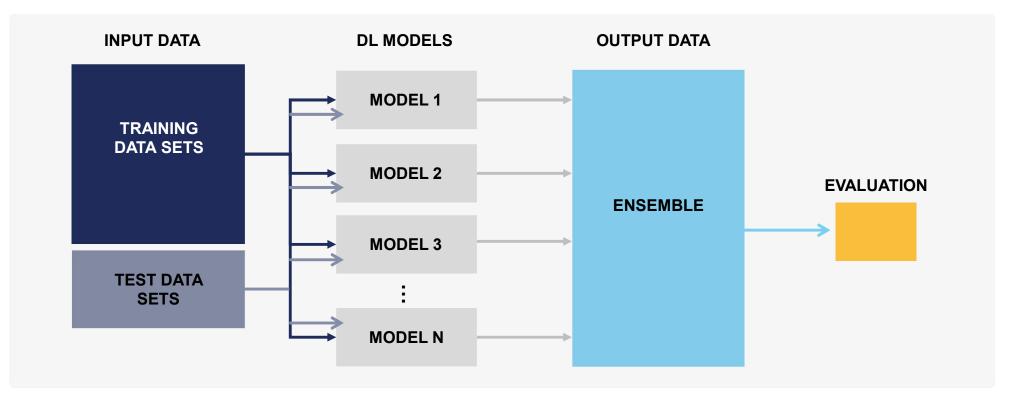
Negative correlation between the two metrics; e.g. **Optimise Precision, depress Recall**

Balance needed to

optimising operations; e.g. reserve drilling, mine planning etc

ENSEMBLING MODELS

- Models created by different data sets
- Averaging out errors
- Models same or similar results –higher confidence of accuracy

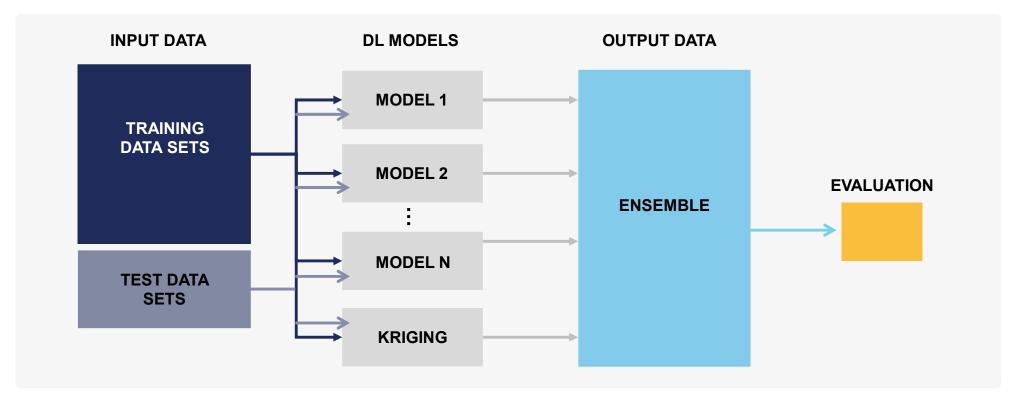


ENSEMBLING HYBRID MODELS STRATUM AI amira

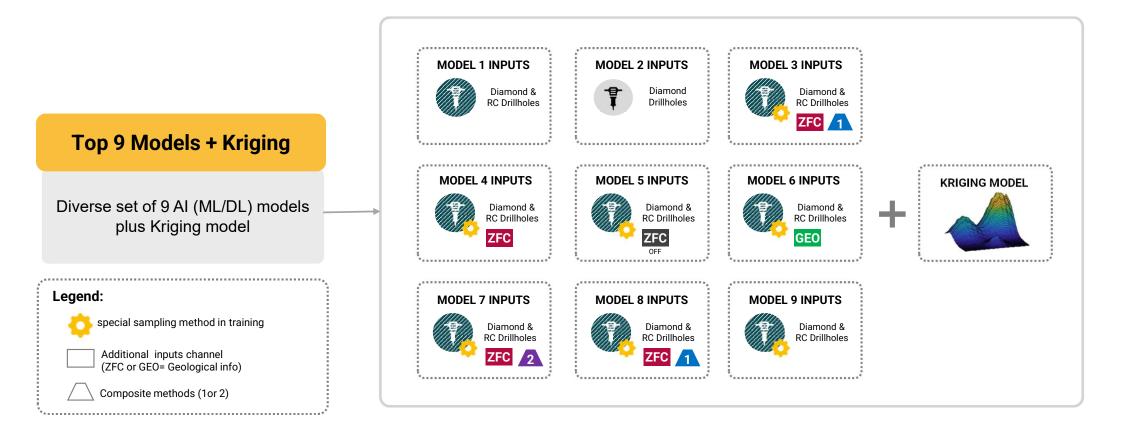
Kriging model included

More accurate

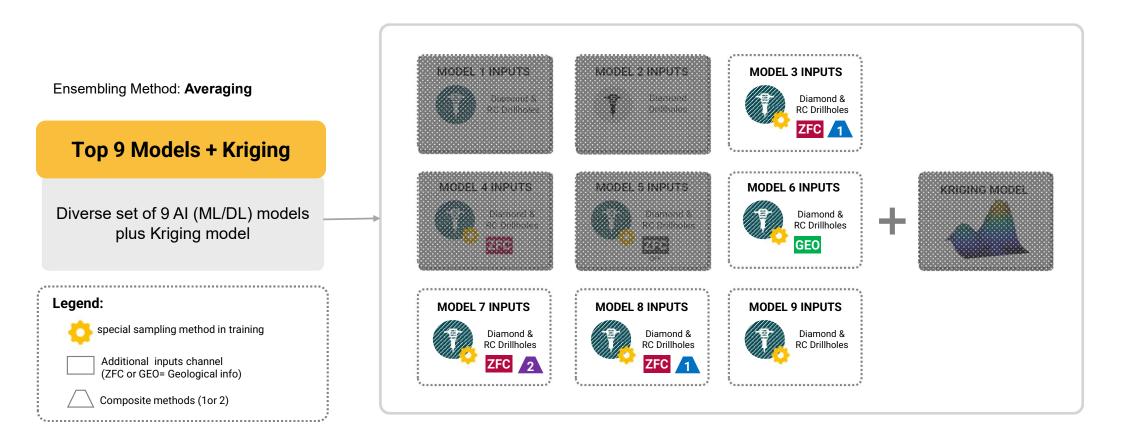
- Ensemble leverages; human (kriging) and DL patterns •
- Adjust weights of models to optimise
 - Al or kriging not a binary choice; a continuum



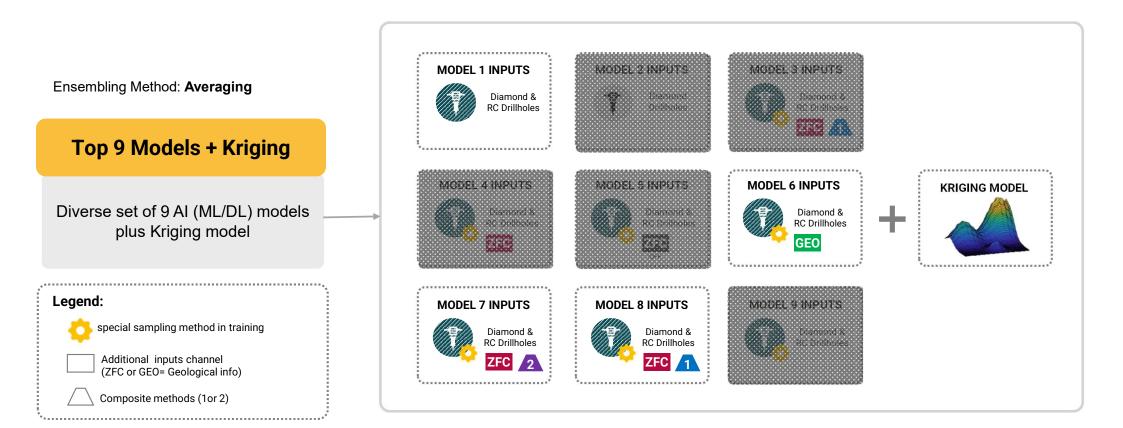
MODELS IN ENSEMBLE



MODELS IN ENSEMBLE



MODELS IN ENSEMBLE AI + KRIGING



ENSEMBLING MODELS RECONCILIATION DDH

• Ensemble models over kriging:

- Reduced rates of false positive (i.e. maximise HG prediction)
- Reduced rates of missed mineralisation

• Ensemble model that includes kriging has greatest improvement

- Best for guidance and mid-term mine planning
- Result of incorporating less drilled zone into the model

MODEL NAME	FALSE POSITIVE (%) (>0.5% Cu)	MISSED (%) (>0.5% Cu)
KRIGING	67.2	82.7
ENSEMBLE AI MODEL ONLY	65.9	81.1
ENSEMBLE AI MODEL + KRIGING	64.4	75.8

ENSEMBLING MODELS RECONCILIATION RESULTS – HIGHER THRESHOLD

- Ensemble models over kriging (DDH):
 - Reduced rates of false positive (i.e. maximise HG prediction)
- Best for **de-risking** major developments
- Ensemble AI + Kriging achieves the best performance at higher sensitivity
- When the model predicts HG, it has a significantly higher chance of being HG, than kriging's estimate while missing equal mineralisation as kriging

MODEL NAME	FALSE POSITIVE (%) (>0.6% Cu)	MISSED (%) (>0.6% Cu)
KRIGING	67.2	82.7
ENSEMBLE AI MODEL ONLY	64.4	82.6
ENSEMBLE AI MODEL + KRIGING	61.8	82.7

STRATUM AI amira

ENSEMBLING MODELS RECONCILIATION RESULTS – LOWER THRESHOLD

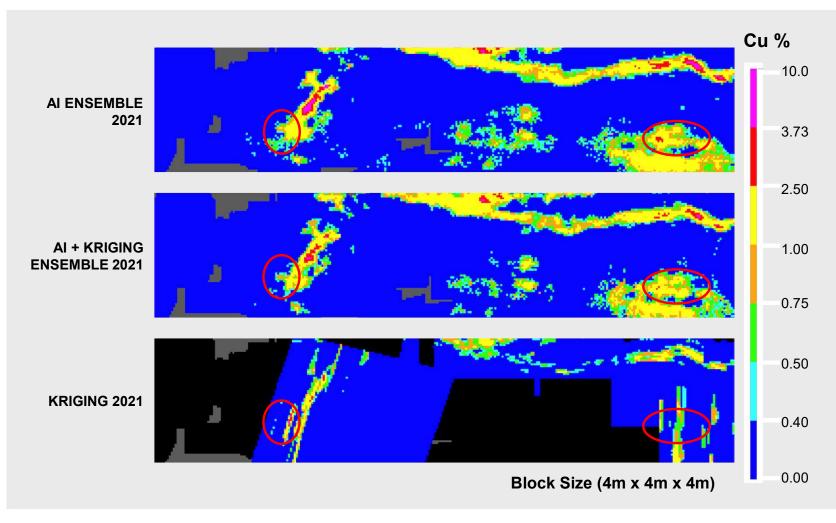
- Ensemble models over kriging (DDH):
 - Reduced rates of missed HG
 mineralisation
- Best for guided **drilling** to increase resource
- Ensemble AI + Kriging achieves the best performance at finding missed mineralisation
- It finds significantly **more reconciled mineralisation** than kriging while having the same false positive rate

MODEL NAME	FALSE POSITIVE (%) (>0.4% Cu)	MISSED (%) (>0.4% Cu)
KRIGING	67.2	82.7
ENSEMBLE AI MODEL ONLY	67.4	79.5
ENSEMBLE AI MODEL + KRIGING	67.2	71.4

STRATUM AI amira

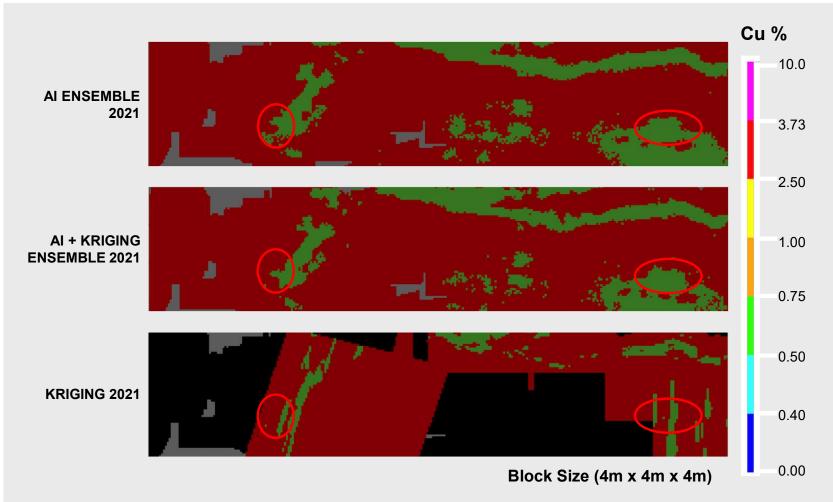
Al and Al + Kriging Ensemble models identifies mineralisation extension of known manto structures

Missed by kriging and confirmed by recent drilling



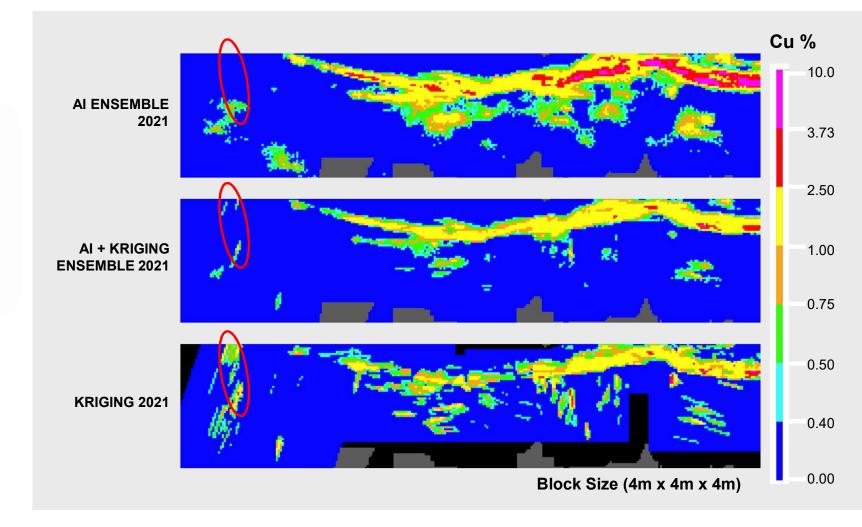
Al and Al + Kriging Ensemble models identifies mineralisation extension of known manto structures

Missed by kriging and confirmed by recent drilling

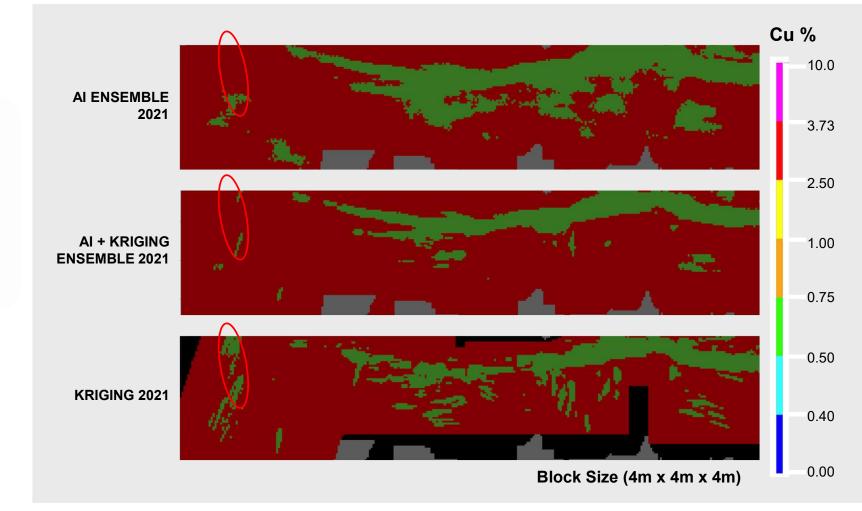


Ore Waste
Cut-off grade 0.50% Cu

The north zone is underpredicted by AI while Kriging correctly detects a portion of the mineralisation (geologist created domains)



The north zone is underpredicted by AI while Kriging correctly detects a portion of the mineralisation (geologist created domains)



DISCUSSION

DISCUSSION

DL Patterns

- Not abstract, random or synthetic
- Not geostatistical interpolation
- DL patterns reveal overprinting geological processes
- Insight into mineral deposit genesis - OBK

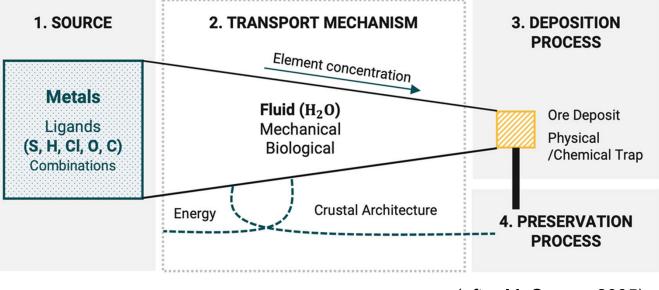
The second second

ML/DL applied to Mineral Resource data, will start to deliver solutions

MINERAL DEPOSIT GENESIS

Geological Processes – Metal Distribution

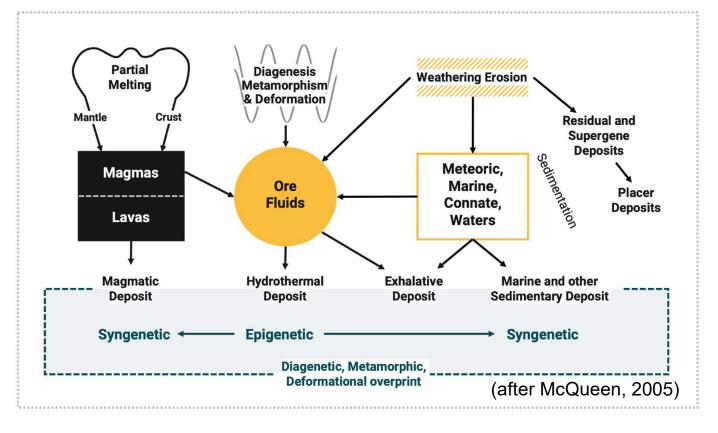
- 1. Source of ore metals and ligands
- 2. Transportation mechanisms
- 3. Depositional processes
 - physical / chemical traps
- 4. Preservation processes



(after McQueen, 2005)

ORE DEPOSIT GENESIS

- Overprinting / secondary geological processes
- Enrich &/or deplete ore deposits
- DL patterns (ore grades) geological processes



CONCLUSIONS

CONCLUSIONS

- Does not rely on pre-existing kriging domains

Ensembling (composite) **best models** – enhanced results Ensembling with kriging – better than DL or kriging alone

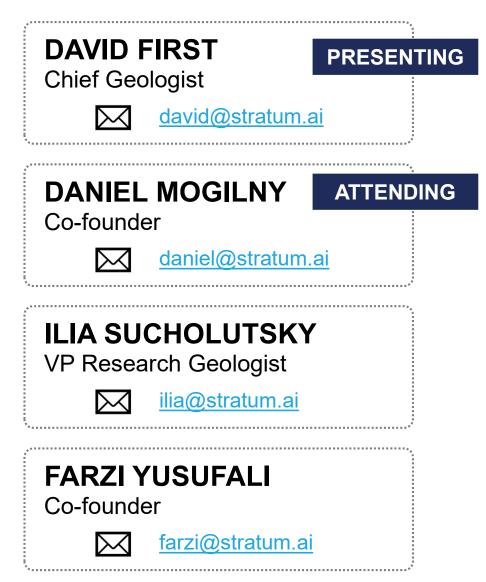
DL patterns more accurate – if lots of historical data to learn from
 Ore categorisation, geometallurgical and geotechnical models
 DL patterns due to primary and secondary geological processes

STRATUM AI

DL patterns may provide **useful insight into deposit gene**sis DL resource modelling will improve as GPUs become more powerful

WRAP UP & CONTACTS

First, D.M., Sucholutsky, I., Mogilny D. & Yusufali F., 2023. Introducing deep learning and interpreting the patterns – a mineral deposit perspective; in Proceeding Mineral Resource Estimation Conference 2023, Publication Series No 2/2023 pp 2-14, (The Australasian Institute of Mining & Metallurgy)



PVI CA INPIA

